You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

986 lines
35 KiB

/*
* This is a AssemblyScript port of the original Java version, which was written by
* Gil Tene as described in
* https://github.com/HdrHistogram/HdrHistogram
* and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/
import { AbstractHistogramBase } from "./AbstractHistogramBase";
import RecordedValuesIterator from "./RecordedValuesIterator";
import PercentileIterator from "./PercentileIterator";
import ulp from "./ulp";
import { FloatFormatter, IntegerFormatter } from "./formatters";
import ByteBuffer from "./ByteBuffer";
import { encodeIntoByteBuffer } from "./encoding";
import { PackedArray } from "./packedarray/PackedArray";
export default class Histogram<T, U> extends AbstractHistogramBase<T, U> {
// "Hot" accessed fields (used in the the value recording code path) are bunched here, such
// that they will have a good chance of ending up in the same cache line as the totalCounts and
// counts array reference fields that subclass implementations will typically add.
/**
* Number of leading zeros in the largest value that can fit in bucket 0.
*/
leadingZeroCountBase: i32;
subBucketHalfCountMagnitude: i32;
/**
* Largest k such that 2^k &lt;= lowestDiscernibleValue
*/
unitMagnitude: i32;
subBucketHalfCount: i32;
lowestDiscernibleValueRounded: u64;
/**
* Biggest value that can fit in bucket 0
*/
subBucketMask: u64;
/**
* Lowest unitMagnitude bits are set
*/
unitMagnitudeMask: u64;
maxValue: u64 = 0;
minNonZeroValue: u64 = U64.MAX_VALUE;
counts: T;
totalCount: u64 = 0;
constructor(
lowestDiscernibleValue: u64,
highestTrackableValue: u64,
numberOfSignificantValueDigits: u8
) {
super();
// Verify argument validity
if (lowestDiscernibleValue < 1) {
throw new Error("lowestDiscernibleValue must be >= 1");
}
if (highestTrackableValue < 2 * lowestDiscernibleValue) {
throw new Error(
`highestTrackableValue must be >= 2 * lowestDiscernibleValue ( 2 * ${lowestDiscernibleValue} )`
);
}
if (
numberOfSignificantValueDigits < 0 ||
numberOfSignificantValueDigits > 5
) {
throw new Error("numberOfSignificantValueDigits must be between 0 and 5");
}
this.identity = AbstractHistogramBase.identityBuilder++;
this.init(
lowestDiscernibleValue,
highestTrackableValue,
numberOfSignificantValueDigits,
1.0
);
}
init(
lowestDiscernibleValue: u64,
highestTrackableValue: u64,
numberOfSignificantValueDigits: u8,
integerToDoubleValueConversionRatio: f64
): void {
this.lowestDiscernibleValue = lowestDiscernibleValue;
this.highestTrackableValue = highestTrackableValue;
this.numberOfSignificantValueDigits = numberOfSignificantValueDigits;
this.integerToDoubleValueConversionRatio = integerToDoubleValueConversionRatio;
/*
* Given a 3 decimal point accuracy, the expectation is obviously for "+/- 1 unit at 1000". It also means that
* it's "ok to be +/- 2 units at 2000". The "tricky" thing is that it is NOT ok to be +/- 2 units at 1999. Only
* starting at 2000. So internally, we need to maintain single unit resolution to 2x 10^decimalPoints.
*/
const largestValueWithSingleUnitResolution =
2 * <u64>Math.pow(10, numberOfSignificantValueDigits);
this.unitMagnitude = <i32>floor(Math.log2(<f64>lowestDiscernibleValue));
//this.lowestDiscernibleValueRounded = pow(2, this.unitMagnitude);
this.unitMagnitudeMask = (1 << this.unitMagnitude) - 1;
// We need to maintain power-of-two subBucketCount (for clean direct indexing) that is large enough to
// provide unit resolution to at least largestValueWithSingleUnitResolution. So figure out
// largestValueWithSingleUnitResolution's nearest power-of-two (rounded up), and use that:
const subBucketCountMagnitude = <i32>(
ceil(Math.log2(<f64>largestValueWithSingleUnitResolution))
);
this.subBucketHalfCountMagnitude = subBucketCountMagnitude - 1;
this.subBucketCount = 1 << subBucketCountMagnitude;
this.subBucketHalfCount = this.subBucketCount >> 1;
this.subBucketMask = (<u64>this.subBucketCount - 1) << this.unitMagnitude;
this.establishSize(highestTrackableValue);
// @ts-ignore
this.counts = instantiate<T>(this.countsArrayLength);
this.leadingZeroCountBase =
64 - this.unitMagnitude - this.subBucketHalfCountMagnitude - 1;
this.percentileIterator = new PercentileIterator(this, 1);
this.recordedValuesIterator = new RecordedValuesIterator(this);
}
/**
* The buckets (each of which has subBucketCount sub-buckets, here assumed to be 2048 as an example) overlap:
*
* <pre>
* The 0'th bucket covers from 0...2047 in multiples of 1, using all 2048 sub-buckets
* The 1'th bucket covers from 2048..4097 in multiples of 2, using only the top 1024 sub-buckets
* The 2'th bucket covers from 4096..8191 in multiple of 4, using only the top 1024 sub-buckets
* ...
* </pre>
*
* Bucket 0 is "special" here. It is the only one that has 2048 entries. All the rest have 1024 entries (because
* their bottom half overlaps with and is already covered by the all of the previous buckets put together). In other
* words, the k'th bucket could represent 0 * 2^k to 2048 * 2^k in 2048 buckets with 2^k precision, but the midpoint
* of 1024 * 2^k = 2048 * 2^(k-1) = the k-1'th bucket's end, so we would use the previous bucket for those lower
* values as it has better precision.
*/
establishSize(newHighestTrackableValue: u64): void {
// establish counts array length:
this.countsArrayLength = this.determineArrayLengthNeeded(
newHighestTrackableValue
);
// establish exponent range needed to support the trackable value with no overflow:
this.bucketCount = this.getBucketsNeededToCoverValue(
newHighestTrackableValue
);
// establish the new highest trackable value:
this.highestTrackableValue = newHighestTrackableValue;
}
determineArrayLengthNeeded(highestTrackableValue: u64): i32 {
if (highestTrackableValue < 2 * this.lowestDiscernibleValue) {
throw new Error(
"highestTrackableValue cannot be < (2 * lowestDiscernibleValue)"
);
}
//determine counts array length needed:
const countsArrayLength = this.getLengthForNumberOfBuckets(
this.getBucketsNeededToCoverValue(highestTrackableValue)
);
return countsArrayLength;
}
/**
* If we have N such that subBucketCount * 2^N > max value, we need storage for N+1 buckets, each with enough
* slots to hold the top half of the subBucketCount (the lower half is covered by previous buckets), and the +1
* being used for the lower half of the 0'th bucket. Or, equivalently, we need 1 more bucket to capture the max
* value if we consider the sub-bucket length to be halved.
*/
getLengthForNumberOfBuckets(numberOfBuckets: i32): i32 {
const lengthNeeded: i32 =
(numberOfBuckets + 1) * (this.subBucketCount >> 1);
return lengthNeeded;
}
getBucketsNeededToCoverValue(value: u64): i32 {
// the k'th bucket can express from 0 * 2^k to subBucketCount * 2^k in units of 2^k
let smallestUntrackableValue =
(<u64>this.subBucketCount) << this.unitMagnitude;
// always have at least 1 bucket
let bucketsNeeded = 1;
while (smallestUntrackableValue <= value) {
if (smallestUntrackableValue > u64.MAX_VALUE >> 1) {
// next shift will overflow, meaning that bucket could represent values up to ones greater than
// Number.MAX_SAFE_INTEGER, so it's the last bucket
return bucketsNeeded + 1;
}
smallestUntrackableValue = smallestUntrackableValue << 1;
bucketsNeeded++;
}
return bucketsNeeded;
}
/**
* Record a value in the histogram
*
* @param value The value to be recorded
* @throws may throw Error if value is exceeds highestTrackableValue
*/
recordValue(value: u64): void {
this.recordSingleValue(value);
}
recordSingleValue(value: u64): void {
const countsIndex = this.countsArrayIndex(value);
if (countsIndex >= this.countsArrayLength) {
// @ts-ignore
this.handleRecordException(<U>1, value);
} else {
this.incrementCountAtIndex(countsIndex);
}
this.updateMinAndMax(value);
this.incrementTotalCount();
}
handleRecordException(count: u64, value: u64): void {
if (!this.autoResize) {
throw new Error(
"Value " + value.toString() + " is outside of histogram covered range"
);
}
this.resize(value);
const countsIndex: i32 = this.countsArrayIndex(value);
this.addToCountAtIndex(countsIndex, count);
this.highestTrackableValue = this.highestEquivalentValue(
this.valueFromIndex(this.countsArrayLength - 1)
);
}
countsArrayIndex(value: u64): i32 {
if (value < 0) {
throw new Error("Histogram recorded value cannot be negative.");
}
const bucketIndex = this.getBucketIndex(value);
const subBucketIndex = this.getSubBucketIndex(value, bucketIndex);
return this.computeCountsArrayIndex(bucketIndex, subBucketIndex);
}
private computeCountsArrayIndex(bucketIndex: i32, subBucketIndex: i32): i32 {
assert(subBucketIndex < this.subBucketCount);
assert(bucketIndex == 0 || subBucketIndex >= this.subBucketHalfCount);
// Calculate the index for the first entry that will be used in the bucket (halfway through subBucketCount).
// For bucketIndex 0, all subBucketCount entries may be used, but bucketBaseIndex is still set in the middle.
const bucketBaseIndex =
(bucketIndex + 1) * (1 << this.subBucketHalfCountMagnitude);
// Calculate the offset in the bucket. This subtraction will result in a positive value in all buckets except
// the 0th bucket (since a value in that bucket may be less than half the bucket's 0 to subBucketCount range).
// However, this works out since we give bucket 0 twice as much space.
const offsetInBucket = subBucketIndex - this.subBucketHalfCount;
// The following is the equivalent of ((subBucketIndex - subBucketHalfCount) + bucketBaseIndex;
return bucketBaseIndex + offsetInBucket;
}
/**
* @return the lowest (and therefore highest precision) bucket index that can represent the value
*/
getBucketIndex(value: u64): i32 {
// Calculates the number of powers of two by which the value is greater than the biggest value that fits in
// bucket 0. This is the bucket index since each successive bucket can hold a value 2x greater.
// The mask maps small values to bucket 0.
// return this.leadingZeroCountBase - Long.numberOfLeadingZeros(value | subBucketMask);
return this.leadingZeroCountBase - <i32>clz(value | this.subBucketMask);
/*return <i32>(
max(
floor(Math.log2(<f64>value)) -
this.subBucketHalfCountMagnitude -
this.unitMagnitude,
0
)
);*/
}
getSubBucketIndex(value: u64, bucketIndex: i32): i32 {
// For bucketIndex 0, this is just value, so it may be anywhere in 0 to subBucketCount.
// For other bucketIndex, this will always end up in the top half of subBucketCount: assume that for some bucket
// k > 0, this calculation will yield a value in the bottom half of 0 to subBucketCount. Then, because of how
// buckets overlap, it would have also been in the top half of bucket k-1, and therefore would have
// returned k-1 in getBucketIndex(). Since we would then shift it one fewer bits here, it would be twice as big,
// and therefore in the top half of subBucketCount.
return <i32>(value >> (bucketIndex + this.unitMagnitude));
}
/**
* Get the size (in value units) of the range of values that are equivalent to the given value within the
* histogram's resolution. Where "equivalent" means that value samples recorded for any two
* equivalent values are counted in a common total count.
*
* @param value The given value
* @return The size of the range of values equivalent to the given value.
*/
sizeOfEquivalentValueRange(value: u64): u64 {
const bucketIndex = this.getBucketIndex(value);
const distanceToNextValue = (<u64>1) << (this.unitMagnitude + bucketIndex);
return distanceToNextValue;
}
/**
* Get the lowest value that is equivalent to the given value within the histogram's resolution.
* Where "equivalent" means that value samples recorded for any two
* equivalent values are counted in a common total count.
*
* @param value The given value
* @return The lowest value that is equivalent to the given value within the histogram's resolution.
*/
lowestEquivalentValue(value: u64): u64 {
const bucketIndex = this.getBucketIndex(value);
const subBucketIndex = this.getSubBucketIndex(value, bucketIndex);
const thisValueBaseLevel = this.valueFromIndexes(
bucketIndex,
subBucketIndex
);
return thisValueBaseLevel;
}
/**
* Get the highest value that is equivalent to the given value within the histogram's resolution.
* Where "equivalent" means that value samples recorded for any two
* equivalent values are counted in a common total count.
*
* @param value The given value
* @return The highest value that is equivalent to the given value within the histogram's resolution.
*/
highestEquivalentValue(value: u64): u64 {
return this.nextNonEquivalentValue(value) - 1;
}
/**
* Get the next value that is not equivalent to the given value within the histogram's resolution.
* Where "equivalent" means that value samples recorded for any two
* equivalent values are counted in a common total count.
*
* @param value The given value
* @return The next value that is not equivalent to the given value within the histogram's resolution.
*/
nextNonEquivalentValue(value: u64): u64 {
return (
this.lowestEquivalentValue(value) + this.sizeOfEquivalentValueRange(value)
);
}
/**
* Get a value that lies in the middle (rounded up) of the range of values equivalent the given value.
* Where "equivalent" means that value samples recorded for any two
* equivalent values are counted in a common total count.
*
* @param value The given value
* @return The value lies in the middle (rounded up) of the range of values equivalent the given value.
*/
medianEquivalentValue(value: u64): u64 {
return (
this.lowestEquivalentValue(value) +
(this.sizeOfEquivalentValueRange(value) >> 1)
);
}
/**
* Get the computed mean value of all recorded values in the histogram
*
* @return the mean value (in value units) of the histogram data
*/
getMean(): f64 {
if (this.totalCount === 0) {
return 0;
}
this.recordedValuesIterator.reset();
let totalValue = <u64>0;
while (this.recordedValuesIterator.hasNext()) {
const iterationValue = this.recordedValuesIterator.next();
totalValue +=
this.medianEquivalentValue(iterationValue.valueIteratedTo) *
iterationValue.countAtValueIteratedTo;
}
return (<f64>totalValue * <f64>1) / <f64>this.totalCount;
}
computeStdDeviation(mean: f64): f64 {
if (this.totalCount === 0) {
return 0;
}
let geometric_deviation_total: f64 = 0.0;
this.recordedValuesIterator.reset();
while (this.recordedValuesIterator.hasNext()) {
const iterationValue = this.recordedValuesIterator.next();
const deviation =
<f64>this.medianEquivalentValue(iterationValue.valueIteratedTo) - mean;
geometric_deviation_total +=
deviation *
deviation *
<f64>iterationValue.countAddedInThisIterationStep;
}
const std_deviation = Math.sqrt(
geometric_deviation_total / <f64>this.totalCount
);
return std_deviation;
}
/**
* Get the computed standard deviation of all recorded values in the histogram
*
* @return the standard deviation (in value units) of the histogram data
*/
getStdDeviation(): f64 {
if (this.totalCount === 0) {
return 0;
}
const mean = this.getMean();
return this.computeStdDeviation(mean);
}
private updatedMaxValue(value: u64): void {
const internalValue: u64 = value + this.unitMagnitudeMask;
this.maxValue = internalValue;
}
private updateMinNonZeroValue(value: u64): void {
if (value <= this.unitMagnitudeMask) {
return;
}
const internalValue = value & ~this.unitMagnitudeMask; // Min unit-equivalent value;
this.minNonZeroValue = internalValue;
}
updateMinAndMax(value: u64): void {
if (value > this.maxValue) {
this.updatedMaxValue(value);
}
if (value < this.minNonZeroValue && value !== 0) {
this.updateMinNonZeroValue(value);
}
}
recordCountAtValue(count: u64, value: u64): void {
const countsIndex = this.countsArrayIndex(value);
if (countsIndex >= this.countsArrayLength) {
this.handleRecordException(count, value);
} else {
this.addToCountAtIndex(countsIndex, count);
}
this.updateMinAndMax(value);
this.totalCount += count;
}
recordSingleValueWithExpectedInterval(
value: u64,
expectedIntervalBetweenValueSamples: u64
): void {
this.recordSingleValue(value);
if (
value < expectedIntervalBetweenValueSamples ||
expectedIntervalBetweenValueSamples === 0
) {
return;
}
for (
let missingValue = value - expectedIntervalBetweenValueSamples;
missingValue >= expectedIntervalBetweenValueSamples;
missingValue -= expectedIntervalBetweenValueSamples
) {
this.recordSingleValue(missingValue);
}
}
private recordValueWithCountAndExpectedInterval(
value: u64,
count: u64,
expectedIntervalBetweenValueSamples: u64
): void {
this.recordCountAtValue(count, value);
if (
expectedIntervalBetweenValueSamples <= 0 ||
value <= expectedIntervalBetweenValueSamples
) {
return;
}
for (
let missingValue = value - expectedIntervalBetweenValueSamples;
missingValue >= expectedIntervalBetweenValueSamples;
missingValue -= expectedIntervalBetweenValueSamples
) {
this.recordCountAtValue(count, missingValue);
}
}
addWhileCorrectingForCoordinatedOmission(
otherHistogram: Histogram<T, U>,
expectedIntervalBetweenValueSamples: u64
): void {
const toHistogram = this;
const otherValues = new RecordedValuesIterator<T, U>(otherHistogram);
while (otherValues.hasNext()) {
const v = otherValues.next();
toHistogram.recordValueWithCountAndExpectedInterval(
v.valueIteratedTo,
v.countAtValueIteratedTo,
expectedIntervalBetweenValueSamples
);
}
}
copyCorrectedForCoordinatedOmission(
expectedIntervalBetweenValueSamples: u64
): Histogram<T, U> {
const copy = new Histogram<T, U>(
this.lowestDiscernibleValue,
this.highestTrackableValue,
this.numberOfSignificantValueDigits
);
copy.addWhileCorrectingForCoordinatedOmission(
this,
expectedIntervalBetweenValueSamples
);
return copy;
}
/**
* Get the value at a given percentile.
* When the given percentile is &gt; 0.0, the value returned is the value that the given
* percentage of the overall recorded value entries in the histogram are either smaller than
* or equivalent to. When the given percentile is 0.0, the value returned is the value that all value
* entries in the histogram are either larger than or equivalent to.
* <p>
* Note that two values are "equivalent" in this statement if
* {@link org.HdrHistogram.AbstractHistogram#valuesAreEquivalent} would return true.
*
* @param percentile The percentile for which to return the associated value
* @return The value that the given percentage of the overall recorded value entries in the
* histogram are either smaller than or equivalent to. When the percentile is 0.0, returns the
* value that all value entries in the histogram are either larger than or equivalent to.
*/
getValueAtPercentile(percentile: f64): u64 {
const requestedPercentile = min(percentile, <f64>100); // Truncate down to 100%
// round count up to nearest integer, to ensure that the largest value that the requested percentile
// of overall recorded values is actually included. However, this must be done with care:
//
// First, Compute fp value for count at the requested percentile. Note that fp result end up
// being 1 ulp larger than the correct integer count for this percentile:
const fpCountAtPercentile =
(requestedPercentile / 100.0) * <f64>this.totalCount;
// Next, round up, but make sure to prevent <= 1 ulp inaccurancies in the above fp math from
// making us skip a count:
const countAtPercentile = <u64>max(
ceil(fpCountAtPercentile - ulp(fpCountAtPercentile)), // round up
1 // Make sure we at least reach the first recorded entry
);
let totalToCurrentIndex: u64 = 0;
for (let i = 0; i < this.countsArrayLength; i++) {
totalToCurrentIndex += this.getCountAtIndex(i);
if (totalToCurrentIndex >= countAtPercentile) {
var valueAtIndex: u64 = this.valueFromIndex(i);
return percentile === 0.0
? this.lowestEquivalentValue(valueAtIndex)
: this.highestEquivalentValue(valueAtIndex);
}
}
return 0;
}
valueFromIndexes(bucketIndex: i32, subBucketIndex: i32): u64 {
return (<u64>subBucketIndex) << (bucketIndex + this.unitMagnitude);
}
valueFromIndex(index: i32): u64 {
let bucketIndex = (index >> this.subBucketHalfCountMagnitude) - 1;
let subBucketIndex =
(index & (this.subBucketHalfCount - 1)) + this.subBucketHalfCount;
if (bucketIndex < 0) {
subBucketIndex -= this.subBucketHalfCount;
bucketIndex = 0;
}
return this.valueFromIndexes(bucketIndex, subBucketIndex);
}
incrementCountAtIndex(index: i32): void {
// @ts-ignore
const currentCount = unchecked(this.counts[index]);
const newCount = currentCount + 1;
if (newCount < 0) {
throw new Error(
newCount.toString() + " would overflow short integer count"
);
}
// @ts-ignore
unchecked((this.counts[index] = newCount));
}
setCountAtIndex(index: i32, value: u64): void {
// @ts-ignore
unchecked((this.counts[index] = <U>value));
}
addToCountAtIndex(index: i32, value: u64): void {
// @ts-ignore
const currentCount = unchecked(this.counts[index]);
const newCount = currentCount + value;
if (newCount < 0) {
throw newCount + " would overflow short integer count";
}
// @ts-ignore
unchecked((this.counts[index] = <U>newCount));
}
incrementTotalCount(): void {
this.totalCount++;
}
getCountAtIndex(index: i32): u64 {
// @ts-ignore
return unchecked(<u64>this.counts[index]);
}
resize(newHighestTrackableValue: u64): void {
this.establishSize(newHighestTrackableValue);
// @ts-ignore
this.counts = this.counts.resize(this.countsArrayLength);
}
add<V, W>(otherHistogram: Histogram<V, W>): void {
const highestRecordableValue = this.highestEquivalentValue(
this.valueFromIndex(this.countsArrayLength - 1)
);
if (highestRecordableValue < otherHistogram.maxValue) {
if (!this.autoResize) {
throw new Error(
"The other histogram includes values that do not fit in this histogram's range."
);
}
this.resize(otherHistogram.maxValue);
}
if (
this.bucketCount === otherHistogram.bucketCount &&
this.subBucketCount === otherHistogram.subBucketCount &&
this.unitMagnitude === otherHistogram.unitMagnitude
) {
// Counts arrays are of the same length and meaning, so we can just iterate and add directly:
let observedOtherTotalCount = <u64>0;
for (let i = 0; i < otherHistogram.countsArrayLength; i++) {
const otherCount = otherHistogram.getCountAtIndex(i);
if (otherCount > 0) {
this.addToCountAtIndex(i, otherCount);
observedOtherTotalCount += otherCount;
}
}
this.totalCount += observedOtherTotalCount;
this.updatedMaxValue(max(this.maxValue, otherHistogram.maxValue));
this.updateMinNonZeroValue(
min(this.minNonZeroValue, otherHistogram.minNonZeroValue)
);
} else {
// Arrays are not a direct match (or the other could change on the fly in some valid way),
// so we can't just stream through and add them. Instead, go through the array and add each
// non-zero value found at it's proper value:
// Do max value first, to avoid max value updates on each iteration:
const otherMaxIndex = otherHistogram.countsArrayIndex(
otherHistogram.maxValue
);
let otherCount = otherHistogram.getCountAtIndex(otherMaxIndex);
this.recordCountAtValue(
otherCount,
otherHistogram.valueFromIndex(otherMaxIndex)
);
// Record the remaining values, up to but not including the max value:
for (let i = 0; i < otherMaxIndex; i++) {
otherCount = otherHistogram.getCountAtIndex(i);
if (otherCount > 0) {
this.recordCountAtValue(otherCount, otherHistogram.valueFromIndex(i));
}
}
}
this.startTimeStampMsec = min(
this.startTimeStampMsec,
otherHistogram.startTimeStampMsec
);
this.endTimeStampMsec = max(
this.endTimeStampMsec,
otherHistogram.endTimeStampMsec
);
}
/**
* Get the count of recorded values at a specific value (to within the histogram resolution at the value level).
*
* @param value The value for which to provide the recorded count
* @return The total count of values recorded in the histogram within the value range that is
* {@literal >=} lowestEquivalentValue(<i>value</i>) and {@literal <=} highestEquivalentValue(<i>value</i>)
*/
private getCountAtValue(value: u64): u64 {
const index = min(
max(0, this.countsArrayIndex(value)),
this.countsArrayLength - 1
);
return this.getCountAtIndex(index);
}
establishInternalTackingValues(
lengthToCover: i32 = this.countsArrayLength
): void {
this.maxValue = 0;
this.minNonZeroValue = u64.MAX_VALUE;
let maxIndex: i32 = -1;
let minNonZeroIndex = -1;
let observedTotalCount: u64 = 0;
for (let index: i32 = 0; index < lengthToCover; index++) {
const countAtIndex: u64 = this.getCountAtIndex(index);
if (countAtIndex > 0) {
observedTotalCount += countAtIndex;
maxIndex = index;
if (minNonZeroIndex == -1 && index != 0) {
minNonZeroIndex = index;
}
}
}
if (maxIndex >= 0) {
this.updatedMaxValue(
this.highestEquivalentValue(this.valueFromIndex(maxIndex))
);
}
if (minNonZeroIndex >= 0) {
this.updateMinNonZeroValue(this.valueFromIndex(minNonZeroIndex));
}
this.totalCount = observedTotalCount;
}
subtract<V, W>(otherHistogram: Histogram<V, W>): void {
const highestRecordableValue = this.valueFromIndex(
this.countsArrayLength - 1
);
if (highestRecordableValue < otherHistogram.maxValue) {
if (!this.autoResize) {
throw new Error(
"The other histogram includes values that do not fit in this histogram's range."
);
}
this.resize(otherHistogram.maxValue);
}
if (
this.bucketCount === otherHistogram.bucketCount &&
this.subBucketCount === otherHistogram.subBucketCount &&
this.unitMagnitude === otherHistogram.unitMagnitude
) {
// optim
// Counts arrays are of the same length and meaning, so we can just iterate and add directly:
let observedOtherTotalCount: u64 = 0;
for (let i = 0; i < otherHistogram.countsArrayLength; i++) {
const otherCount = otherHistogram.getCountAtIndex(i);
if (otherCount > 0) {
this.addToCountAtIndex(i, -otherCount);
observedOtherTotalCount += otherCount;
}
}
this.totalCount = this.totalCount - observedOtherTotalCount;
} else {
for (let i = 0; i < otherHistogram.countsArrayLength; i++) {
const otherCount = otherHistogram.getCountAtIndex(i);
if (otherCount > 0) {
const otherValue = otherHistogram.valueFromIndex(i);
if (this.getCountAtValue(otherValue) < otherCount) {
throw new Error(
"otherHistogram count (" +
otherCount.toString() +
") at value " +
otherValue.toString() +
" is larger than this one's (" +
this.getCountAtValue(otherValue).toString() +
")"
);
}
this.recordCountAtValue(-otherCount, otherValue);
}
}
}
// With subtraction, the max and minNonZero values could have changed:
if (
this.getCountAtValue(this.maxValue) <= 0 ||
this.getCountAtValue(this.minNonZeroValue) <= 0
) {
this.establishInternalTackingValues();
}
}
/**
* Produce textual representation of the value distribution of histogram data by percentile. The distribution is
* output with exponentially increasing resolution, with each exponentially decreasing half-distance containing
* <i>dumpTicksPerHalf</i> percentile reporting tick points.
*
* @param printStream Stream into which the distribution will be output
* <p>
* @param percentileTicksPerHalfDistance The number of reporting points per exponentially decreasing half-distance
* <p>
* @param outputValueUnitScalingRatio The scaling factor by which to divide histogram recorded values units in
* output
* @param useCsvFormat Output in CSV format if true. Otherwise use plain text form.
*/
outputPercentileDistribution(
percentileTicksPerHalfDistance: i32 = 5,
outputValueUnitScalingRatio: f64 = 1
): string {
let result = "";
result += " Value Percentile TotalCount 1/(1-Percentile)\n\n";
const iterator = this.percentileIterator;
iterator.reset(percentileTicksPerHalfDistance);
const valueFormatter = new FloatFormatter(
12,
this.numberOfSignificantValueDigits
);
const percentileFormatter = new FloatFormatter(2, 12);
const totalCountFormatter = new IntegerFormatter(10);
const lastFormatter = new FloatFormatter(14, 2);
while (iterator.hasNext()) {
const iterationValue = iterator.next();
if (iterationValue.percentileLevelIteratedTo < 100) {
result +=
valueFormatter.format(
<f64>iterationValue.valueIteratedTo / outputValueUnitScalingRatio
) +
" " +
percentileFormatter.format(
iterationValue.percentileLevelIteratedTo / <f64>100
) +
" " +
totalCountFormatter.format(iterationValue.totalCountToThisValue) +
" " +
lastFormatter.format(
<f64>1 /
(<f64>1 - iterationValue.percentileLevelIteratedTo / <f64>100)
) +
"\n";
} else {
result +=
valueFormatter.format(
<f64>iterationValue.valueIteratedTo / outputValueUnitScalingRatio
) +
" " +
percentileFormatter.format(
iterationValue.percentileLevelIteratedTo / <f64>100
) +
" " +
totalCountFormatter.format(iterationValue.totalCountToThisValue) +
"\n";
}
}
// Calculate and output mean and std. deviation.
// Note: mean/std. deviation numbers are very often completely irrelevant when
// data is extremely non-normal in distribution (e.g. in cases of strong multi-modal
// response time distribution associated with GC pauses). However, reporting these numbers
// can be very useful for contrasting with the detailed percentile distribution
// reported by outputPercentileDistribution(). It is not at all surprising to find
// percentile distributions where results fall many tens or even hundreds of standard
// deviations away from the mean - such results simply indicate that the data sampled
// exhibits a very non-normal distribution, highlighting situations for which the std.
// deviation metric is a useless indicator.
//
const formatter = new FloatFormatter(
12,
this.numberOfSignificantValueDigits
);
const _mean = this.getMean();
const mean = formatter.format(_mean / outputValueUnitScalingRatio);
const std_deviation = formatter.format(
this.computeStdDeviation(_mean) / outputValueUnitScalingRatio
);
const max = formatter.format(
<f64>this.maxValue / outputValueUnitScalingRatio
);
const intFormatter = new IntegerFormatter(12);
const totalCount = intFormatter.format(this.totalCount);
const bucketCount = intFormatter.format(this.bucketCount);
const subBucketCount = intFormatter.format(this.subBucketCount);
// #[Mean = 50.0,
// #[Mean = 50.000,
result +=
`#[Mean = ` +
mean.toString() +
`, StdDeviation = ` +
std_deviation.toString() +
`]
#[Max = ` +
max.toString() +
`, Total count = ` +
totalCount.toString() +
`]
#[Buckets = ` +
bucketCount.toString() +
`, SubBuckets = ` +
subBucketCount.toString() +
`]
`;
return result;
}
encode(): Uint8Array {
const buffer = ByteBuffer.allocate(1024);
encodeIntoByteBuffer(this, buffer);
return buffer.data.slice(0, buffer.position);
}
public get estimatedFootprintInBytes(): i32 {
// @ts-ignore
return offsetof<Histogram<T, U>>() + this.counts.estimatedFootprintInBytes;
}
clearCounts(): void {
// @ts-ignore
this.counts.clear();
}
reset(): void {
this.clearCounts();
this.totalCount = 0;
this.startTimeStampMsec = 0;
this.endTimeStampMsec = 0;
//this.tag = NO_TAG;
this.maxValue = 0;
this.minNonZeroValue = U64.MAX_VALUE;
}
}
export class Storage<T, U> {
[key: number]: number;
array: T;
constructor(size: i32) {
this.array = instantiate<T>(size);
}
public get estimatedFootprintInBytes(): i32 {
// @ts-ignore
return offsetof<Storage<T, U>>() + this.array.byteLength;
}
resize(newSize: i32): Storage<T, U> {
const newArray = new Storage<T, U>(newSize);
// @ts-ignore
newArray.array.set(this.array);
return newArray;
}
clear(): void {
// @ts-ignore
this.array.fill(0);
}
@operator("[]") private __get(index: i32): U {
// @ts-ignore
return unchecked(this.array[index]);
}
@operator("[]=") private __set(index: i32, value: U): void {
// @ts-ignore
unchecked((this.array[index] = value));
}
}
export type Uint8Storage = Storage<Uint8Array, u8>;
export type Uint16Storage = Storage<Uint16Array, u16>;
export type Uint32Storage = Storage<Uint32Array, u32>;
export type Uint64Storage = Storage<Uint64Array, u64>;
export class Histogram8 extends Histogram<Uint8Storage, u8> {}
export class Histogram16 extends Histogram<Uint16Storage, u16> {}
export class Histogram32 extends Histogram<Uint32Storage, u32> {}
export class Histogram64 extends Histogram<Uint64Storage, u64> {}
export class PackedHistogram extends Histogram<PackedArray, u64> {}